
 

Understanding PID Control

Familiar examples show how and why proportional-integral-derivative controllers behave
the way they do.
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A feedback controller is designed to generate an output that causes some corrective effort to be
applied to a process so as to drive a measurable process variable towards a desired value known as
the setpoint. The controller uses an actuator to affect the process and a sensor to measure the
results. 

Virtually all feedback controllers determine their output by observing the error between the setpoint
and a measurement of the process variable. Errors occur when an operator changes the setpoint
intentionally or when a disturbance or a load on the process changes the process variable
accidentally. The controller’s mission is to eliminate the error automatically.

A mechanical
flow
controller
manipulates
the valve to
maintain the
downstream
flow rate in
spite of the
leakage. The
size of the
valve
opening at
time t is
V(t). The
flowrate is
measured by
the vertical
position of
the float
F(t). The
gain of the
controller is
A/B. This
arrangement
would be
entirely
impractical
for a modern
flow control
application,
but a similar
principle was
actually used
in James
Watt’s
original
fly-ball
governor.
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g
Watt used a
float to
measure the
speed of his
steam engine
(through a
mechanical
linkage) and
a lever arm
to adjust the
steam flow to
keep the
speed
constant.

An example
Consider for example, the mechanical flow controller depicted above. A portion of the water flowing
through the tube is bled off through the nozzle on the left, driving the spherical float upwards in
proportion to the flow rate. If the flowrate slows because of a disturbance such as leakage, the float
falls and the valve opens until the desired flow rate is restored.

In this example, the water flowing through the tube is the process, and its flowrate is the process
variable that is to be measured and controlled. The lever arm serves as the controller, taking the
process variable measured by the float’s position and generating an output that moves the valve’s
piston. Adjusting the length of the piston rod sets the desired flowrate; a longer rod corresponds to a
lower setpoint and vice versa.

Suppose that at time t the valve opening is V(t) inches and the resulting flowrate is sufficient to push
the float to a height of F(t) inches. This process is said to have a gain of Gp = F(t)/V(t). The gain of a
process shows how much the process variable changes when the controller output changes. In this
case,

F(t) = Gp V(t)     [1].

Equation [1] is an example of a process model that quantifies the relationships between the
controller’s efforts and its effects on the process variable.

The controller also has a gain Gc, which determines the controller’s output at time t according to

V(t) = Gc (Fmax - F(t))     [2]

The constant Fmax is the highest possible float position, achieved when the valve’s piston is
completely depressed. The geometry of the lever arm shows that Gc = A/B, since the valve’s piston
will move A inches for every B inches that the float moves. In other words, the quantity (Fmax - F(t))
that enters the controller as an input "gains" strength by a factor of A/B before it is output to the
process as a control effort V(t).

Note that controller equation [2] can also be expressed as

V(t) = Gc (Fset - F(t)) + VB     [3]

where Fset is the desired float position (achieved when the flow rate equals the setpoint) and VB = Gc
(Fmax - Fset) is a constant known as the bias. A controller’s bias represents the control effort required
to maintain the process variable at its setpoint in the absence of a load.

Proportional control
Equation [3] shows how this simple mechanical controller computes its output as a result of the error
between the process variable and the setpoint. It is a proportional controller because its output
changes in proportion to a change in the measured error. The greater the error, the greater the
control effort; and as long as the error remains, the controller will continue to try to generate a
corrective effort.
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So why would a feedback controller have to be any more sophisticated than that? The problem is a
proportional controller tends to settle on the wrong corrective effort. As a result, it will generally leave
a steady state error (offset) between the setpoint and the process variable after it has finished
responding to a setpoint change or a load.

This phenomenon puzzled early control engineers, but it can be seen in the flow control example
above. Suppose the process gain Gp is 1 so that any valve position V(t) will cause an identical float
position F(t). Suppose also the controller gain Gc is 1 and the controller’s bias VB is 1. If the flow-
rate’s setpoint requires Fset to be 3 inches and the actual float position is only 2 inches, there will be
an error of (Fset - F(t)) = 1 inch. The controller will amplify that 1 inch error to a 2 inch valve opening
according to equation [3]. However, since that 2 inch valve opening will in turn cause the float position
to remain at 2 inches, the controller will make no further change to its output and the error will remain
at 1 inch.

The same mechanical
controller now
manipulates the valve
to shut off the flow
once the tank has
filled to the desired
level Fset. The

controller’ gain of
A/B has been set
much lower, since the
float position now
spans a much greater
range.

Integral control
Even bias-free proportional controllers can cause steady-state errors (try the previous exercise again
with Gp = 1, Gc = 2, and VB = 0). One of the first solutions to overcome this problem was the
introduction of integral control. An integral controller generates a corrective effort proportional not to
the present error, but to the sum of all previous errors. 

The level controller depicted above illustrates this point. It is essentially the same float-and-lever
mechanism from the flow control example except that it is now surrounded by a tank, and the float no
longer hovers over a nozzle but rests on the surface of the water. This arrangement should look
familiar to anyone who has inspected the workings of a common household toilet.

As in the first example, the controller uses the valve to control the flowrate of the water. However, its
new objective is to refill the tank to a specified level whenever a load (i.e., a flush) empties the tank.
The float position F(t) still serves as the process variable, but it represents the level of the water in the
tank, rather than the water’s flowrate. The setpoint Fset is the level at which the tank is full.

The process model is no longer a simple gain equation like [1], since the water level is proportional to
the accumulated volume of water that has passed through the valve. That is 

Equation [4] shows that tank level F(t) depends not only on the size of the valve opening V(t) but also
on how long the valve has been open. 

The controller itself is the same, but the addition of the integral action in the process makes the
controller more effective. Specifically, a controller that contains its own integral action or acts on a
process with inherent integral action will generally not permit a steady-state error. 
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That phenomenon becomes apparent in this example. The water level in the tank will continue to rise
until the tank is full and the valve shuts off. On the other hand, if both the controller and the process
happened to be pure integrators as in equation [4], the tank would overflow because back-to-back
integrators in a closed loop cause the steady-state error to grow without bound!

The blue trace on this
strip chart shows the
error between the
process variable F(t)
and its desired value
Fset. The derivative

control action in red
is the time derivative
of this difference.
Derivative control
action is zero when
the error is constant
and spikes
dramatically when the
error changes
abruptly.

Derivative control
Proportional (P) and integral (I) controllers still weren’t good enough for early control engineers.
Combining the two operations into a single "PI" controller helped, but in many cases a PI controller
still takes too long to compensate for a load or a setpoint change. Improved performance was the
impetus behind the development of the derivative controller (D) that generates a control action
proportional to the time derivative of the error signal. 

The basic idea of derivative control is to generate one large corrective effort immediately after a load
change in order to begin eliminating the error as quickly as possible. The strip chart in the derivative
control example shows how a derivative controller achieves this. At time t1, the error, shown in blue,
has increased abruptly because a load on the process has dramatically changed the process variable
(such as when the toilet is flushed in the level control example).

The derivative of the error signal is shown in red. Note the spike at time t1. This happens because the
derivative of a rapidly increasing step-like function is itself an even more rapidly increasing impulse
function. However, since the error signal is much more level after time t1, the derivative of the error
returns to roughly zero thereafter.

In many cases, adding this "kick" to the controller’s output solves the performance problem nicely.
The derivative action doesn’t produce a particularly precise corrective effort, but it generally gets the
process moving in the right direction much faster than a PI controller would. 

Combined PID control
Fortunately, the proportional and integral actions of a full "PID" controller tend to make up for the
derivative action’s lack of finesse. After the initial kick has passed, derivative action generally dies out
while the integral and proportional actions take over to eliminate the remaining error with more
precise corrective efforts. As it happens, derivative-only controllers are very difficult to implement
anyway. 

On the other hand, the addition of integral and derivative action to a proportional-only controller has
several potential drawbacks. The most serious of these is the possibility of closed-loop instability (see
"Controllers must balance performance with closed-loop stability," Control Engineering, May 2000). If
the integral action is too aggressive, the controller may over-correct for an error and create a new one
of even greater magnitude in the opposite direction. When that happens, the controller will eventually
start driving its output back and forth between fully on and fully off, often described as hunting.
Proportional-only controllers are much less likely to cause hunting, even with relatively high gains. 

Another problem with the PID controller is its complexity. Although the basic operations of its three
actions are simple enough when taken individually, predicting just exactly how well they will work
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together for a particular application can be difficult. The stability issue is a prime example. Whereas
adding integral action to a proportional-only controller can cause closed-loop instability, adding
proportional action to an integral-only controller can prevent it.

PID in action
Revisiting the Flow control example, suppose an electronic PID controller capable of generating
integral and derivative action as well as proportional control has replaced the simple lever arm
controller. Suppose too a viscous slurry has replaced the water so the flow rate changes gradually
when the valve is opened or closed.

Since this viscous process tends to respond slowly to the controller’s efforts—when the process
variable suddenly differs from the setpoint because of a load or setpoint change—the controller’s
immediate reaction will be determined primarily by the derivative action, as shown on the Derivative
control example. This causes the controller to initiate a burst of corrective efforts the instant the error
moves away from zero. The change in the process variable will also initiate the proportional action
that keeps the controller’s output going until the error is eliminated.

After a while, the integral action will begin to contribute to the controller’s output as the error
accumulates over time. In fact, the integral action will eventually dominate the controller’s output,
since the error decreases so slowly in a sluggish process. Even after the error has been eliminated,
the controller will continue to generate an output based on the accumulation of errors remaining in the
controller’s integrator. The process variable may then overshoot the setpoint, causing an error in the
opposite direction, or perhaps closed-loop instability.

If the integral action is not too aggressive, this subsequent error will be smaller than the original, and
the integral action will begin to diminish as negative errors are added to the history of positive ones.
This whole operation may then repeat several times until both the error and the accumulated error are
eliminated. Meanwhile, the derivative term will continue to add its share to the controller output based
on the derivative of the oscillating error signal. The proportional action also will come and go as the
error waxes and wanes.

Now replace the viscous slurry with water, causing the process to respond quickly to the controller’s
output changes. The integral action will not play as dominant a role in the controller’s output, since the
errors will be short lived. On the other hand, the derivative action will tend to be larger because the
error changes rapidly when the process is highly responsive.

Clearly the possible effects of a PID controller are as varied as the processes to which they are
applied. A PID controller can fulfill its mission to eliminate errors, but only if properly configured for
each application.

For more information on control loop analysis
and tuning, visit www.controleng.com.
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Examining the Fundamentals of PID
Control

Algorithms take the simple feedback controller one step further 

Vance J. VanDoren, CONTROL ENGINEERING 

This tutorial presents an overview of how and why PID
controllers work. It is the first in a four part series on the

fundamental concepts of modern control theory. 

A feedback controller is designed to generate an
"output" that causes some corrective effort to be
applied to a "process" so as to drive a measurable
"process variable" towards a desired value known as
the "setpoint." Figure 1 shows a typical feedback
control loop, with blocks representing the dynamic
elements of the system and arrows representing the
flow of information, generally in the form of electrical
signals. 

Virtually all feedback controllers determine their output
by observing the "error" between the setpoint and the
actual process variable measurement. A home
thermostat, for example, uses the air conditioning system to correct the temperature in a process
comprised of a room and the air inside. It sends an electrical signal (an output) to turn on the air
conditioner when the error between the actual temperature (the process variable) and the desired
temperature (the setpoint) is too high. 

A look at PID control
A proportional-integral-derivative or PID controller performs much the same function as the
thermostat, but with a more elaborate algorithm for determining its output. It looks at the current
value of the error, the integral of the error over a recent time interval, and the current derivative of
the error signal to determine not only how much of a correction to apply, but for how long. Those
three quantities are each multiplied by a "tuning constant" and added together to produce the
current controller output CO(t) , thusly: 

 [eq. 1] 

In equation [1], P is the "proportional" tuning constant, I is the "integral" tuning constant, D is the
"derivative" tuning constant, and e(t) is the error between the setpoint SP(t) and the process
variable PV(t) at time t. 

 [eq. 2] 

If the current error is large, has been sustained for some time, or is changing rapidly, the controller
will attempt to make a large correction by generating a large output. Conversely, if the process
variable has matched the setpoint for some time, the controller will leave well enough alone. 

PROCESS CONTROL 
TUTORIAL

Process
control and
instrumentation
PID
(proportional/integral/derivative)
Process
controllers 
Open
architecture 
Programmable
logic
controllers
(PLCs) 
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Fig. 1: Feedback controllers determine their output by
observing the error between setpoint and the actual

process variable measurement. 

Tuning the controller 
Conceptually, that's all there is to a PID controller. The tricky part is "tuning" it; i.e., setting the P, I,
and D tuning constants so that the weighted sum of the proportional, integral, and derivative terms
produces a controller output that steadily drives the process variable in the direction required to
eliminate the error. 

The brute force solution to this problem would be to generate the largest possible output by using
the largest possible tuning constants. A controller thus tuned would amplify every error and initiate
extremely aggressive efforts to eliminate even the slightest discrepancy between the setpoint and
the process variable. However, an overly aggressive controller can actually make matters worse by
driving the process variable past the setpoint as it attempts to correct a recent error. In the worst
case, the process variable will end up even further away from the setpoint than before. 

On the other hand, a PID controller that is tuned too conservatively may not be able to eliminate
one error before the next one appears. A well-tuned controller performs at a level somewhere
between those two extremes. It works aggressively to eliminate an error quickly, but without
overdoing it. 

How to best tune a PID controller depends upon how the process responds to the controller's
corrective efforts. Processes that react instantaneously and predictably don't really require
feedback at all. A car's headlights, for example, come on as soon as the driver hits the switch. No
subsequent corrections are required to achieve the desired illumination. 

On the other hand, the car's cruise controller cannot accelerate the car to the desired cruising
speed as quickly. Because of friction and the car's inertia, there is always a delay between the time
that the cruise controller activates the accelerator and the time that the car's speed reaches the
setpoint (see Fig. 2). A PID controller must be tuned to account for such "lags." 

PID in action 
Consider a sluggish process with a relatively long lag—accelerating an overloaded car with an
undersized engine, for example. Such a process tends to respond slowly to the controller's efforts.
If such errors are introduced abruptly (as when the setpoint is changed), the controller's initial
reaction will be determined primarily by the actions of the derivative term in equation 1. This will
cause the controller to initiate a burst of corrective effort the instant the error changes from zero.
The proportional term will then come into play to keep the controller's output going until the error is
eliminated. 

After a while, the integral term will also begin to contribute to the controller's output as the error
accumulates over time. In fact, the integral term will eventually come to dominate the output signal
because the error decreases so slowly in a sluggish process. Even after the error has been
eliminated, the controller will continue to generate an output based on the history of errors that
have been accumulating in the controller's integrator. The process variable may then "overshoot"
the setpoint, causing an error in the opposite direction. 

If the integral tuning constant is not too large, this subsequent error will be smaller than the
original, and the integral term will begin to diminish as negative errors are added to the history of
positive ones. This whole operation may then repeat several times until both the error and the
accumulated error are eliminated. Meanwhile, the derivative term will continue to add its share to
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the controller output based on the derivative of the oscillating error signal. The proportional term
will also come and go as the error waxes and wanes. 

Fig. 2: A familiar real-world example of feedback control
can be found in the "cruise control" feature common in

many automobiles. 

Short lag time 
Now suppose the process has very little lag so that it responds quickly to the controller's efforts.
The integral term in equation 1 will not play as dominant a role in the controller's output since the
errors will be so short-lived. On the other hand, the derivative term will tend to be larger, since the
error changes rapidly in the absence of long lags. 

Clearly, the relative importance of each term in the controller's output depends on the behavior of
the controlled process. Determining the best mix suitable for a particular application is the essence
of controller tuning. For the sluggish process, a large value for the derivative tuning constant D
might be advisable in order to accelerate the controller's reaction to a setpoint change. For the
fast-acting process, however, an equally large value for D might cause the controller's output to
fluctuate wildly, as every change in the error is amplified by the controller's derivative action. 

Tuning techniques 
There are three schools of thought on how to select the values of P, I, and D required to achieve
an acceptable level of performance for the controller. The first method is simple trial and
error—tweak the tuning parameters and watch the controller handle the next error. If it can
eliminate the error in a timely fashion, quit. If it proves to be too conservative or too aggressive,
increase or decrease one or more of the tuning constants. Experienced control engineers seem to
know just how much proportional, integral, and derivative action to add or subtract in order to
correct the performance of a poorly tuned controller. 

Unfortunately, intuitive tuning procedures can be difficult to develop because a change in one
tuning constant tends to affect the performance of all three terms in the controller's output. For
example, turning down the integral action reduces overshoot. This in turn slows the rate of change
of the error and thus reduces the derivative action as well. 

Using math models 
The analytical approach to the tuning problem, which is the second method, is more rigorous. It
involves a mathematical "model" of the process that relates the value of the process variable at
time t to the current rate of change of the process variable and a history of the controller's output.
For example, 

 [eq. 3] 

This particular model describes a process with a "gain" of K, a "time constant" of T, and a
"deadtime" of d. The process gain represents the magnitude of the controller's effect on the
process variable. A large value of K corresponds to a process that amplifies small control efforts
into large changes in the process variable. 

The time constant in equation 3 represents the severity of the process lag. A large value of T
corresponds to a long lag in a sluggish process. The deadtime d represents another kind of delay
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present in many processes, where the "sensor" used to measure the process variable is located
some distance from the "actuator" used to implement the controller's corrective efforts. The time
required for the actuator's effects to reach the sensor is the deadtime. During that interval, the
process variable does not respond at all to the actuator's activity. Only after the deadtime has
elapsed does the lag time begin (see Fig. 3). 

Fig. 3: Examination of the Ziegler-Nichols
reaction curve reveals the response of a simple lag

process to a unit step change in the controller
output.

In the thermostat example above, the air conditioner is the actuator and the thermostat's onboard
thermocouple is the sensor. If there is any ductwork between the air conditioner and the
thermostat, there will be a deadtime while each slug of cool air travels down the duct. The room
temperature will not begin to drop until the first slug of cool air emerges from the duct. 

There are other characteristics of process behavior that can be factored into a process model, but
equation 3 is one of the simplest and most widely used. It applies to any process with a process
variable that changes in proportion to its current value. For example, a car of mass m accelerates
when its cruise control calls for the engine to apply a force Fe to the drive axle. However, that
acceleration a(t) is opposed by frictional forces Ff that are proportional to the car's current velocity
v(t) by a factor of Kf. If the force applied by the engine is proportional to the controller's output by a
factor of Ke, then applying Newton's second law to the process gives: 

 [eq. 4] 

 [eq. 5] 

 [eq. 6] 

"The process variable is v(t) , the process gain is K = Ke/Kf and the process time constant is T =
m/Kf. In this example no deadtime exists, since the speed of the car begins to change as soon as
the cruise controller activates the accelerator. 

If a model like equation 3 can be defined for a process, its behavior can be quantified by analyzing
the model's parameters. In equation 6, for example, the values of K and T (computed from Ke, Kf,
and m) determine how the velocity of the car will change in response to any control effort. A
model's parameters in turn dictate the tuning constants required to modify the behavior of the
process with a feedback controller. 

Literally hundreds of analytical techniques can translate model parameters into tuning constants.
Each approach uses a different model, different controller objectives, and different mathematical
tools. Several examples of analytical tuning will be explored in future installments of this series. 
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The Ziegler-Nichols approach
The third approach to the tuning problem is something of a compromise between purely
self-teaching trial-and-error techniques and the more rigorous analytical techniques. It was
originally proposed in 1942 by John G. Ziegler and Nathaniel B. Nichols, and remains popular
today because of its simplicity and its applicability to any process governed by a model in the form
of equation 3. Through trial-and-error experiments, Ziegler and Nichols created a set of "tuning
rules" that translate the parameters of equation 3 into values for P, I, and D, giving generally
acceptable controller performance. In particular, 

 [eqs. 7] 

Ziegler and Nichols also came up with a practical method for estimating the values of K, T, and d
experimentally. With the controller in manual mode (no feedback), they induced a step change in
the controller's output, then analyzed the process reaction graphically (see Fig. 3). They concluded
that the process gain K can be approximated by dividing the net change of the process variable by
the size of the step change generated by the controller. They estimated the deadtime d from the
interval between the controller's step change and the beginning of a line drawn tangent to the
reaction curve at its steepest point. They also used the inverse slope of that line to estimate the
time constant T. 

Other tuning rules have since been developed for more complex models and for other controller
performance objectives. Several of these, as well as a reprint of Ziegler and Nichols' 1942 paper,
can be found in "Reference Guide to PID Tuning—A collection of reprinted articles of PID tuning
techniques" published by Control Engineering in 1991). 

Control Engineering – February 1996 
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